

Welcome to laserfun’s documentation!

Start by having a look at the README.

Contents:

	⚡ laserfun README ⚡
	😊 Introduction

	🚀 Intallation 🚀

	🤪 Example of use

	😎 Contributing

	🍻 License

	🎁 laserfun package
	laserfun.nlse module

	laserfun.pulse module

	laserfun.fiber module

Indices and tables

	Index

	Module Index

	Search Page

⚡ laserfun README ⚡

Some fun functions for modeling laser pulses in Python.

Documentation is available at: laserfun.readthedocs.io [https://laserfun.readthedocs.io/]

😊 Introduction

So far, laserfun consists mainly of:

	The Pulse class, which handles the amplitude of the electic field of the pulse in the time and frequency domains.

	The Fiber class, which keeps track of the properties of the fiber, including the dipersion, nonlinearity, length, loss, etc. (By “fiber”, we refer to any medium where it is appropriate to model a laser pulse in a single spatial mode which doesnt change over the propagation length. So, optical fibers and optical waveguides would be the most appropriate. Short distances of free-space propagation may also be appropriate, but important effects such as diffraction are ignored.)

	The NLSE function, which models the propagation of a pulse object through a fiber object according to the generalized nonlinear Schrodinger equation (GNLSE) as described in “Supercontinuum Generation in Optical Fibers” Edited by J. M. Dudley and J. R. Taylor (Cambridge 2010).The GNLSE propagates an optical input field (a laser pulse) through a nonlinear material (a fiber) and takes into account dispersion and Chi-3 nonlinearity.

🚀 Intallation 🚀

🤔Requirements

laserfun requires Python 3.9+. NumPy [https://www.numpy.org/] and SciPy [https://www.scipy.org/] (version 1.6.0+) are also required, and Matplotlib [https://matplotlib.org/] is required to run the examples. If you don’t already have Python, we recommend an “all in one” Python package such as the Anaconda Python Distribution [https://www.anaconda.com/products/individual], which is available for free.

🐣 With pip

Sorry, were not on PyPi just yet. But soon!

🐻 With setuptools

If you might contribute to the laserfun project, we recommend that you fork the repository to your own account, click “open in GitHub desktop”, and save your fork somewhere on your computer. Then, navigate to the laserfun folder on the command line (Anaconda prompt in Windows or Terminal on the Mac) and type

python setup.py develop

This method of installation allows you to modify the source code in-place without re-installing each time.

If you just want to install the code, then you can simply download this repository as a zip file, extract it, navigate to the laserfun folder on the command line, and type

python setup.py install

🤪 Example of use

Here is a basic example that generates a pulse object using a 50-fs sech function, creates a fiber object with some dispersion, and propagates the pulse through the fiber using the NLSE.

import laserfun as lf

pulse = lf.Pulse(pulse_type='sech', fwhm_ps=0.050, epp=50e-12, center_wavelength_nm=1550)
fiber1 = lf.Fiber(length=0.010, center_wl_nm=1550, dispersion=(-0.12, 0, 5e-6), gamma_W_m=1)
results = lf.NLSE(pulse, fiber1)

results.plot()

Here is the output:

[image: example NLSE output]

Note

Additional examples are located in the examples directory.

😎 Contributing

The laserfun project welcomes suggestions and pull request! The best place to start is to open a new Issue here: https://github.com/laserfun/laserfun/issues.

The following subsections contain a few notes for developers.

🐙 Unit tests

To run the tests, go to the PyNLSE folder and run:

pytest nlse -v --cov=nlse

Coverage can be checked with:

coverage html

which generates a html file that shows which lines are covered by the tests.

🐿️ Building documentation

To build the documentation, go to the laserfun/doc folder on the command line and type:

make html

Then, you can open

laserfun/doc/build/html/index.html

in a web browser to view the documentation.

🍻 License

laserfun is distributed under the MIT License.

Enjoy!

🎁 laserfun package

laserfun.nlse module

Functions related to propagation of pulses according to the NLSE.

	
laserfun.nlse.NLSE(pulse, fiber, nsaves=200, atol=0.0001, rtol=0.0001, reload_fiber=False, raman=False, shock=True, integrator='lsoda', print_status=True)

	Propagate an laser pulse through a fiber according to the NLSE.

This function propagates an optical input field (often a laser pulse)
through a nonlinear material using the generalized nonlinear
Schrodinger equation, which takes into account dispersion and
nonlinearity. It is a “one dimensional” calculation, in that it doesn’t
capture things like self focusing and other geometric effects. It’s most
appropriate for analyzing light propagating through optical fibers.

This code is based on the Matlab code found at www.scgbook.info,
which is based on Eqs. (3.13), (3.16) and (3.17) of the book
“Supercontinuum Generation in Optical Fibers” Edited by J. M. Dudley and
J. R. Taylor (Cambridge 2010). The original Matlab code was written by
J.C. Travers, M.H. Frosz and J.M. Dudley (2009). They ask that you cite
the book in publications using their code.

	Parameters:

	
	pulse (pulse object) – This is the input pulse.

	fiber (fiber object) – This defines the media (“fiber”) through which the pulse propagates.

	nsaves (int) – The number of equidistant grid points along the fiber to return
the field. Note that the integrator usually takes finer steps than
this, the nsaves parameters simply determines what is returned by this
function.

	atol (float) – Absolute tolerance for the integrator. Smaller values produce more
accurate results but require longer integration times. 1e-4 works well.

	rtol (float) – Relative tolerance for the integrator. 1e-4 work well.

	reload_fiber (boolean) – This determines if the fiber information is reloaded at each step. This
should be set to True if the fiber properties (gamma, dispersion) vary
as a function of length.

	raman (boolean) – Determines if the Raman effect will be included. Default is False.

	shock (boolean) – Determines if the self-steepening (shock) term will be taken into
account. This is especially important for situations where the
slowly varying envelope approximation starts to break down, which
can occur for large bandwidths (short pulses).

	integrator (string) – Selects the integrator that will be passes to scipy.integrate.ode.
options are ‘lsoda’ (default), ‘vode’, ‘dopri5’, ‘dopri853’.
‘lsoda’ is a good option, and seemed fastest in early tests.
I think ‘dopri5’ and ‘dopri853’ are simpler Runge-Kutta methods,
and they seem to take longer for the same result.
‘vode’ didn’t seem to produce good results with “method=’adams’”, but
things werereasonable with “method=’bdf’”
For more information, see:
docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

	print_status (boolean) – This determines if the propagation status will be printed. Default
is True.

	Returns:

	results – This object contains all of the results. Use
z, f, t, AW, AT = results.get_results()
to unpack the z-coordinates, frequency grid, time grid, amplitude at
each z-position in the freuqency domain, and amplitude at each
z-position in the time domain.

	Return type:

	PulseData object

	
class laserfun.nlse.PulseData(z, AW, AT, pulse_in, pulse_out, fiber)

	Bases: object

Process data from a pulse propagation.

The following list of parameters is the attributes of the class.

	Parameters:

	
	z (array of length n) – The z-values corresponding the the propagation.

	f_THz (array of length m) – The values of the frequency grid in THz.

	t_ps (array of length m) – The values of time grid in ps

	AT (2D array) – The complex amplitude of the electric field in the time domain at each
position in z.

	AW (2D array) – The complex amplitude of the electric field in the freq. domain at
each position in z.

	pulse_in (pulse object) – The input pulse object.

	pulse_out (pulse object) – The output pulse object.

	fiber (fiber object) – The fiber object that the pulse was propagated through.

	
calc_coherence(pulse_in, fiber, num_trials=5, n_steps=100, random_seed=None, noise_type='one_photon_freq', **nlse_kwargs)

	This function runs several nlse simulations (given by num_trials), each
time adding random noise to the pulse. By comparing the electric fields
of the different pulses, an estimate of the coherence can be made.

	Parameters:

	
	pulse_in (pulse object) –

	num_trials (int) – this determines the number of trials to be run.

	random_seed (int) – this is the seed for the random noise generation. Default is None,
which does not set a seed for the random number generator, which
means that the numbers will be completely randomized.
Setting the seed to a number (i.e., random_seed=0) will still
generate random numbers for each trial, but the results from
calculate_coherence will be completely repeatable.

	noise_type (str) – this specifies the method for including random noise onto the
pulse. See pynlo.light.PulseBase.Pulse.add_noise() for the
different methods.

	Returns:

	
	g12W (2D numpy array) – This 2D array gives the g12 parameter as a function of propagation
distance and the frequency. g12 gives a measure of the coherence of
the pulse by comparing several different trials.

	results (list of results for each trial) – This is a list, where each item of the list contains (z_positions,
AW, AT, pulse_out), the results obtained from
pynlo.interactions.FourWaveMixing.SSFM.propagate().

	
get_results(data_type='amplitude', rep_rate=1)

	Get the frequency domain (AW) and time domain (AT) results of the
NLSE propagation. Also provides the length (z), frequnecy (f), and time
(t) arrays.

'amplitude' - Native units for the NLSE, AT and AW are sqrt(W).
Does NOT consider the rep-rate.

'intensity' - Absolute value of amplitude squared. These units make
some sense for AT, since they are J/sec, so integrating over the pulse
works as expected. Units for AW are J*Hz, so be careful when
integrating. Does NOT consider rep-rate.

'mW/bin' - AW and AT are in mW per bin, so naive summing provides
average power (in mW). Rep-rate taken into account.

'mW/THz' - returns AW in units of mW/THz and AT in mW/ps. Rep-rate
taken into account.

'dBm/THz' - returns AW in units of mW/THz and AT in dBm/ps.
Rep-rate taken into account.

'mW/nm' - returns AW in units of mW/nm and AT in mW/ps. Rep-rate
taken into account.

'dBm/nm' - returns AW in units of dBm/nm and AT in dBm/ps. Rep-rate
taken into account.

In the above, dBm is 10*log10(mW).

Note that, for the “per nm” situations, AW is still
returned on a grid of even frequencies, so the uneven wavelength
spacing should be taken into account when integrating. Use
get_results_wavelength to re-interpolate to an evenly spaced
wavelength grid.

In order to get per-pulse numbers for all methods, simple set the rep-
rate to 1.

	Parameters:

	
	data_type ('string') – Determines the units for the returned AW and AT arrays.

	rep_rate (float) – The repetition rate of the pulses for calculation of average power
units. Does not affect the “amplitude” or “intensity” calculations,
but scales all other calculations.

	Returns:

	
	z (1D numpy array of length nsaves) – Array of the z-coordinate along fiber, units of meters.

	f_THz (1D numpy array of length n.) – The frequency grid (not angular freq) in THz.

	t_ps (1D numpy array of length n) – The temporal grid in ps.

	AW (2D numpy array, with dimensions nsaves x n) – The complex amplitide of the frequency domain field at every step.

	AT (2D numpy array, with dimensions nsaves x n) – The complex amplitude of the time domain field at every step.

	
get_results_wavelength(wmin=None, wmax=None, wn=None, data_type='intensity', rep_rate=1)

	Get results on a wavelength grid.

Re-interpolates the AW array from evenly-spaced frequencies to
evenly-spaced wavelengths.

	Parameters:

	
	wmin (float or None) – the minimum wavelength for the re-interpolation grid.
If None, it defaults to 0.25x the center wavelength of the pulse.
If a float, this is the minimum wavelength of the pulse in nm

	wmax (float or None) – the minimum wavelength for the re-interpolation grid.
If None, it defaults to 4x the center wavelength of the pulse.
If a float, this is the maximum wavelength of the pulse in nm

	wn (int or None) – number of wavelengths for the re-interpolation grid.
If None, it defaults to the number of points in AW multiplied by 2
If an int, then this is just the number of points.

	data_type ('string') – Determines the units for the AW and AT arrays. See the
documentation for the get_results function for more
information. Note that data_type='amplitude' is supported but
not recommended because interpolation on the rapidly varying grid
of complex values can lead to inconsistent results.

	rep_rate (float) – The repetition rate of the pulses for calculation of average power
units. Does not affect the “amplitude” or “intensity” calculations,
but scales all other calculations.

	Returns:

	
	z (1D numpy array of length nsaves) – Array of the z-coordinate along fiber.

	wls (1D numpy array of length n.) – The wavelength grid.

	t (1D numpy array of length n) – The temporal grid.

	AW_WLS (2D numpy array, with dimensions nsaves x n) – The complex amplitide of the frequency domain field at every step.

	AT (2D numpy array, with dimensions nsaves x n) – The complex amplitude of the time domain field at every step.

	
plot(flim=30, tlim=50, margin=0.2, wavelength=False, show=True, units='intensity', rep_rate=100000000.0)

	Plot the results in both the time and frequency domain.

	Parameters:

	
	flim (float or array of length 2) – This sets the xlimits of the frequency domain plot. If this is a
single number, it defines the dB level at which the plot will be
set (with a margin). If an array of two values, this manually sets
the xlims.

	tlim (float or array of length 2) – Same as flim, but for the time domain.

	margin (float) – Fraction to pad the xlimits. Default is 0.2.

	wavelength (boolean) – Determines if the “frequency” domain will be displayed in Frequency
(THz) or wavelength (nm).

	show (boolean) – determines if plt.show() will be called to show the plot

	units (string) – Units for the frequency-domain plots. For example, dBm/THz mW/THz.
See the documentation for the data_type keyword argument for
the get_results method for more information.

	rep_rate (float) – The repetition rate of the pule train in Hz. This is used to
calculate the average powers when using units other than
“intensity”.

	Returns:

	
	fig (matplotlib.figure object) – The figure object so that modifications can be made.

	axs (an 2x2 array of axes objects) – The axes objects, so that modifications can be made.
For example: axs[0, 1].set_xlim(0, 1000)

	
laserfun.nlse.dB(num)

	

laserfun.pulse module

Tools for working with laser pulses.

	
laserfun.pulse.FFT_t(A, ax=0)

	Do a FFT with fft-shifting.

	
laserfun.pulse.IFFT_t(A, ax=0)

	Do an iFFT with fft-shifting.

	
class laserfun.pulse.Pulse(pulse_type='sech', center_wavelength_nm=1550, fwhm_ps=0.2, time_window_ps=10.0, power=1, epp=None, npts=4096, power_is_avg=False, frep_MHz=100, GDD=0, TOD=0, FOD=0)

	Bases: object

Generate a new pulse object based on a pre-defined pulse shapes.

Customized pulses can be generated by calling this function and then
manually setting the time- or frequency domain pulse-profile using
pulse.at or pulse.aw.

Note that the pulse object is intrinsically a single laser pulse, and the
time and frequency domain electric fields refer to the single pulse, not
the average power of the laser at some repetition rate. The `
power_is_avg` and frep_MHz values are used only to set the electric
field during the generation of the pulse and are not stored in the pulse
object.

	Parameters:

	
	pulse_type (string) – The shape of the pulse in the time domain. Options are:

	sech, which produces a hyperbolic secant (sech) shaped pulse
A(t) = sqrt(power) * sech(t/T0), where T0=fwhm/1.76

	gaussian, which produces a Gaussian shaped pulse
A(t) = sqrt(power) * exp(-(t/T0)^2/2), where T0=fwhm/1.76

	sinc, which uses a sin(x)/x (sinc) function
A(t) = sqrt(power) * sin(t/T0)/(t/T0), were T0=fwhm/3.79

	center_wavelength_nm (float) – The center wavelength of the pulse in nm.

	fwhm_ps (float) – The full-width-at-half-maximum of the pulse in picoseconds.

	time_window_ps (float) – The time window in picoseconds. This is the full-width of the time
window, so the times will go from -time_window_ps * 0.5 to
+ time_window_ps * 0.5.

	power (float) – this is either the peak power of the pulse or the average power of
the pulse-train, depending on power_is_avg. In both cases the units
are in watts.

	epp (float or None) – the energy-per-pulse in Joules. If this is not None (the default),
then this overrides the power argument to set the pulse energy.

	npts (int) – the number of points in the time and frequency grids. Using powers
of 2 might be beneficial for the efficiency of the FFTs in the
NLSE algorithm. 2**12 is a good starting point.

	power_is_avg (boolean) – determines if the power is peak power or average power. Note that this
value is only used for calculating the initial pulse amplitude and is
not saved as an intrinsic characteristic of the pulse object.

	frep_MHz (float) – the repetition rate in MHz. Used for setting the peak power of the
pulse to match the average power of the pulse train. Similar to
power_is_avg, the rep rate is not saved as part of the pulse class.

	GDD (float) – the group-delay-dispersion (in ps^2) to apply to the pulse.

	TOD (float) – the third-order dispersion (in ps^3) to apply to the pulse.

	FOD (float) – the fourth-order dispersion (in ps^3) to apply to the pulse.

	
add_noise(noise_type='sqrt_N_freq')

	Add random intensity and phase noise to a pulse.

	Parameters:

	noise_type (string) – The method used to add noise. The options are:

	sqrt_N_freq : adds noise to each bin in the frequency domain.
The average noise added is proportional to sqrt(N), and where N
is the number of photons in that frequency bin.

	one_photon_freq` : which adds one photon of noise to each
frequency bin.

	
property at

	Amplitude of the time-domain electric field (complex).

Units are sqrt(W), which can be considered sqrt(J)/sqrt(s),
so units of energy per time bin when the absolute value is squared.

	
property aw

	Set/get the complex amplitude of the pulse in the frequency domain.

Corresponds to the frequencies in the pulse.aw array. Note that this
is the complex amplitude and that the intensity is the square of the
absolute value.

The units are sqrt(W) or sqrt(J)*sqrt(Hz), so abs(aw)^2 * deltaF will
provide J/bin. (90% sure this comment about units is correct.)

	
calc_width(level=0.5)

	Calculate the pulse width.

For example, the full-width-at-half-maxmimum
(FWHM) or the 1/e width. If the pulse has multiple crossings (for example,
if it reaches the 0.5 level multiple times) the widest extent will be
returned.

	Parameters:

	level (float) – the fraction of the peak to calculate the width.
Must be between 0 and 1.
Default is 0.5, which provides the FWHM.
1/e = 0.367879
1/e^2 = 0.135335

	Returns:

	width – the width of the pulse in picoseconds.

	Return type:

	float

	
property center_wavelength_nm

	Set/get the center wavelength of the grid in units of nanometers.

	
property centerfrequency_THz

	Set/get The center frequency (float) of the pulse in THz.

	
chirp_pulse_W(GDD, TOD=0, FOD=0.0, w0_THz=None)

	Alter the phase of the pulse.

Apply the dispersion coefficients \(\beta_2, \beta_3, \beta_4\)
expanded around frequency \(\omega_0\).

	Parameters:

	
	GDD (float) – Group delay dispersion (\(\beta_2\)) [ps^2]

	TOD (float, optional) – Group delay dispersion (\(\beta_3\)) [ps^3], defaults to 0.

	FOD (float, optional) – Group delay dispersion (\(\beta_4\)) [ps^4], defaults to 0.

	w0_THz (float, optional) – Center freq. of dispersion expansion, defaults to grid center freq.

Notes

The convention used for dispersion is

\[E_{new} (\omega) = \exp\left(i \left(
\frac{1}{2} GDD\, \omega^2 + \frac{1}{6}\, TOD \omega^3 +
\frac{1}{24} FOD\, \omega^4 \right)\right) E(\omega)\]

	
clone_pulse(p)

	Copy all parameters of pulse_instance into this one.

	
create_cloned_pulse()

	Create and return new pulse instance identical to this instance.

	
property df_THz

	Frequency grid spacing in THz.

	
property dt_ps

	Return time grid spacing in ps.

	
property epp

	Energy per pulse in Joules.

	
property f_THz

	Get the absolute frequency grid in THz.

	
property npts

	Set/get Number of points (int) in the time (and frequency) grid.

	
psd(units='W', rep_rate=1)

	Return the power spectral density (PSD) in various units. Set the
rep_rate to 1 to get “per pulse” units. Otherwise, the rep-rate will be
used to scale the per-pulse numbers to average power units. By default,
the rep-rate of the pulse object is used.

Unit options are:

'mW', mW for each data point. (Not actually PSD units.)
'mW/THz', mW per THz.
'dBm/THz', 10*log10(mW) per THz.
'mW/nm', mW per nanometer.
'dBm/nm', 10*log10(mW) per nanometer.

Note that for the “per nanometer” units, the data is still delivered on
a grid that is evenly spaced in frequency, not wavelength. So, if
integrating the PSD, it is necessary to take into account the changing
size of the wavelength bins to recover the correct value for the
average power. The psd_wavelength function provides both the evenly
spaced wavelength grid and the y-axis unit conversion.

	Parameters:

	
	units (str) – Determines the units of the intensity of power-spectral-density.
See above for options.

	rep_rate (float) – Determines the repetition rate (in Hz) used to calculate the PSD.
Set to 1 to get per-pulse PSD. If None, then the rep-rate for
the pulse object will be used. Note that the rep-rate provided to
this function doesn’t change the rep-rate of the pulse object, it
is merely used for the PSD calculation.

	Returns:

	psd – numpy array of power spectral densities corresponding to pulse.aw.

	Return type:

	array

	
psd_wavelength(wl_min=500, wl_max=2500, wl_step=0.2)

	– Not yet implemented –
evenly spaced wavelength and intensity in various units

	
property t_ps

	Get the temporal grid in ps.

	
property time_window_ps

	Set/get the time window of the time grid in picoseconds (float).

	
transform_limit()

	“Return a transform-limited pulse (flat spectral phase).

	
property v_THz

	Get the relative angular frequency grid in THz.

	
property w0_THz

	Get the center angular frequency (THz).

	
property w_THz

	Get the absolute angular frequency grid (THz).

	
property wavelength_nm

	Wavelength grid in nanometers.

laserfun.fiber module

Contains classes and functions for working with fibers.

	
class laserfun.fiber.Fiber(length=0.1, center_wl_nm=1550, dispersion_format='GVD', dispersion=[0], gamma_W_m=0, loss_dB_per_m=0)

	Bases: object

A class that contains the information about a fiber.

	
get_B(pulse, z=0)

	Get the propagation constant (Beta) at the frequency grid of pulse.

Here, B refers to the propagation constant, in units of 1/meters, and
not to the Beta2 parameter. Also, these are relative B values, in that
they are set to zero at the pulse central frequency. Referring to
these values as “integrated dispersion” might be appropriate.

Three different methods are used,

If fiberspecs[“dispersion_format”] == “D”, then the DTabulationToBetas
function is used to fit the datapoints in terms of the Beta2, Beta3,
etc. coefficients expanded around the pulse central frequency.

If fiberspecs[“dispersion_format”] == “GVD”, then the betas are
calculated as a Taylor expansion using the Beta2, Beta3, etc.
coefficients around the fiber central frequency.

If fiberspecs[“dispersion_format”] == “n”, then the betas are
calculated directly from the effective refractive index (n_eff)
as beta = n_eff * 2 * pi / lambda, where lambda is the wavelength
of the light. In this case, self._x should be the wavelength (in nm)
and self._y should be n_eff (unitless).

	Parameters:

	
	pulse (pulse object) – the pulse object must be supplied to define the frequency grid.

	z (float) – the postion along the length of the fiber. The units of this must
match the units expected by the functions provided to
set_dispersion_function() and set_gamma_function().
Just use meters!

	Returns:

	B – the propagation constant (beta) at the frequency gridpoints of the
supplied pulse (units of 1/meters).

	Return type:

	1D array of floats

	
get_alpha(z=0)

	Query alpha (loss per meter) at a specific z-position.

	Parameters:

	z (float) – the position along the fiber (in meters)

	Returns:

	alpha – the loss (in units of 1/Watts)

	Return type:

	float

	
get_gamma(z=0)

	Query gamma (effective nonlinearity) at a specific z-position.

	Parameters:

	z (float) – the position along the fiber (in meters)

	Returns:

	gamma – the effective nonlinearity (in units of 1/(Watts * meters))

	Return type:

	float

	
set_alpha_function(gamma_function)

	Set alpha (loss) function that varies with z.

Gamma should be in units of 1/(W m), NOT 1/(W km)

	Parameters:

	alpha_function (function) – a function returning gamma as a function of z. z should be in
units of meters.

	
set_dispersion_function(dispersion_function, dispersion_format='GVD')

	Set dispersion to function that varies as a function of z.

The function can either provide beta2, beta3, beta4, etc. coefficients,
or provide two arrays, wavelength (nm) and D (ps/nm/km).

	Parameters:

	
	dispersion_function (function) – A function returning D or Beta coefficients as a function of z.
z should be in meters.

	dispersion_format ('GVD' or 'D' or 'n') – determines if the dispersion will be in terms of Beta coefficients
(GVD, in units of ps^2/m, not ps^2/km),
D (ps/nm/km), or
n (effective refractive index)

	
set_gamma_function(gamma_function)

	Set gamma to a function that varies as a function of z.

The function should return gamma (the effective nonlinearity) in units
of 1/(Watts * meters)) that can vary as a function of z, the length
along the fiber.

	Parameters:

	gamma_function (function) – a function returning gamma as a function of z. z should be in
units of meters.

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 laserfun	

 	
 	
 laserfun.fiber	

 	
 	
 laserfun.nlse	

 	
 	
 laserfun.pulse	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | S
 | T
 | V
 | W

A

 	
 	add_noise() (laserfun.pulse.Pulse method)

 	
 	at (laserfun.pulse.Pulse property)

 	aw (laserfun.pulse.Pulse property)

C

 	
 	calc_coherence() (laserfun.nlse.PulseData method)

 	calc_width() (laserfun.pulse.Pulse method)

 	center_wavelength_nm (laserfun.pulse.Pulse property)

 	
 	centerfrequency_THz (laserfun.pulse.Pulse property)

 	chirp_pulse_W() (laserfun.pulse.Pulse method)

 	clone_pulse() (laserfun.pulse.Pulse method)

 	create_cloned_pulse() (laserfun.pulse.Pulse method)

D

 	
 	dB() (in module laserfun.nlse)

 	
 	df_THz (laserfun.pulse.Pulse property)

 	dt_ps (laserfun.pulse.Pulse property)

E

 	
 	epp (laserfun.pulse.Pulse property)

F

 	
 	f_THz (laserfun.pulse.Pulse property)

 	
 	FFT_t() (in module laserfun.pulse)

 	Fiber (class in laserfun.fiber)

G

 	
 	get_alpha() (laserfun.fiber.Fiber method)

 	get_B() (laserfun.fiber.Fiber method)

 	
 	get_gamma() (laserfun.fiber.Fiber method)

 	get_results() (laserfun.nlse.PulseData method)

 	get_results_wavelength() (laserfun.nlse.PulseData method)

I

 	
 	IFFT_t() (in module laserfun.pulse)

L

 	
 	
 laserfun.fiber

 	module

 	
 laserfun.nlse

 	module

 	
 	
 laserfun.pulse

 	module

M

 	
 	
 module

 	laserfun.fiber

 	laserfun.nlse

 	laserfun.pulse

N

 	
 	NLSE() (in module laserfun.nlse)

 	
 	npts (laserfun.pulse.Pulse property)

P

 	
 	plot() (laserfun.nlse.PulseData method)

 	psd() (laserfun.pulse.Pulse method)

 	
 	psd_wavelength() (laserfun.pulse.Pulse method)

 	Pulse (class in laserfun.pulse)

 	PulseData (class in laserfun.nlse)

S

 	
 	set_alpha_function() (laserfun.fiber.Fiber method)

 	
 	set_dispersion_function() (laserfun.fiber.Fiber method)

 	set_gamma_function() (laserfun.fiber.Fiber method)

T

 	
 	t_ps (laserfun.pulse.Pulse property)

 	
 	time_window_ps (laserfun.pulse.Pulse property)

 	transform_limit() (laserfun.pulse.Pulse method)

V

 	
 	v_THz (laserfun.pulse.Pulse property)

W

 	
 	w0_THz (laserfun.pulse.Pulse property)

 	
 	w_THz (laserfun.pulse.Pulse property)

 	wavelength_nm (laserfun.pulse.Pulse property)

 nav.xhtml

 Table of Contents

 		
 Welcome to laserfun’s documentation!

 		
 ⚡ laserfun README ⚡

 		
 😊 Introduction

 		
 🚀 Intallation 🚀

 		
 🤔Requirements

 		
 🐣 With pip

 		
 🐻 With setuptools

 		
 🤪 Example of use

 		
 😎 Contributing

 		
 🐙 Unit tests

 		
 🐿️ Building documentation

 		
 🍻 License

 		
 🎁 laserfun package

 		
 laserfun.nlse module

 		
 NLSE()

 		
 PulseData

 		
 dB()

 		
 laserfun.pulse module

 		
 FFT_t()

 		
 IFFT_t()

 		
 Pulse

 		
 laserfun.fiber module

 		
 Fiber

_static/plus.png

_static/file.png

_images/eecfab6e7fe2dbc50813fec745d032f64e4e95e1.png
Intensity (dB)

_20 -

_40 -

_60 -

_80 -

—100 4

Propagation distance (mm)

o

0

100

100

200
Frequency (THz)

200
Frequency (THz)

300

300

400

400

—— Initial pulse
—— Final pulse

-15 -1.0 -05

-15 -1.0 -05

0.0
Time (ps)

0.0
Time (ps)

0.5

0.5

1.0

1.0

1.5

1.5

_static/minus.png

